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Abstract
It is well known that usual quantum teleportation protocols cannot transport
energy. Recently, new protocols called quantum energy teleportation (QET)
have been proposed, which transport energy by local operations and classical
communication with the ground states of many-body quantum systems. In this
paper, we compare two different QET protocols for transporting energy with the
electromagnetic field. In the first protocol, a 1/2 spin (a qubit) is coupled with
the quantum fluctuation in the vacuum state and measured in order to obtain
one-bit information about the fluctuation for the teleportation. In the second
protocol, a harmonic oscillator is coupled with the fluctuation and measured in
order to obtain continuous-variable information about the fluctuation. In the
spin protocol, the amount of teleported energy is suppressed by an exponential
damping factor when the amount of input energy increases. This suppression
factor becomes power damping in the case of the harmonic oscillator protocol.
Therefore, it is concluded that obtaining more information about the quantum
fluctuation leads to teleporting more energy. This result suggests a profound
relationship between energy and quantum information.

PACS numbers: 03.70.+k, 11.10.-z

1. Introduction

In quantum field theory, the concept of negative energy physics has attracted considerable
attention for a long time. Quantum interference can produce various states containing regions
of negative energy, although the total energy remains nonnegative [1]. The concept of negative
energy plays important roles in many fundamental problems of physics, including traversable
wormhole [2], cosmic censorship [3] and the second law of thermodynamics [4]. In addition,
its physical application to quantum optics has been discussed [5]. Recently, negative energy
physics has yielded a quantum protocol called quantum energy teleportation (QET) in which
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energy can be transported using only local operations and classical communication (LOCC)
without breaking causality and local energy conservation [6–8]. QET can be theoretically
considered in various many-body quantum systems including (1 + 1)-dimensional massless
fields [6], spin chains [7] and cold trapped ions [8]. Based on developing measurement
technology with sensitive energy resolution for the systems, the QET effect might be observable
in future. It may also be possible to enhance the amount of teleported energy by preparing
a large number of parallel QET channels, performing a QET protocol for each channel and
accumulating each teleported energy so as to achieve the desired amount of total energy. After
future experimental verification of QET, an amazing possibility would be open in principle
for nano-technology application of QET. For example, it may be imagined that, without heat
generation in the intermediate subsystems of the QET channels, energy is transported in
nano-machines at a speed much faster than the evolution speed of excitations of the channels.
This technology, if possible, helps the future development of quantum computers in which
energy distribution and quantum tasks in the devices are completed before heat generation in
the system. QET is also expected to provide insights on unsolved problems in gravitational
physics. In fact, a QET process has already been analyzed in black hole physics, and from
the measured information of zero-point oscillation of quantum fields, it can be regarded as
controlled black hole evaporation if we consider the protocol near the horizon of a large-mass
black hole [9].

Energy transportation usually requires physical carriers of energy such as electric currents
and radiation waves. Energy is infused into the gateway point of a transport channel connected
to a distant exit point. Then, energy carriers of the channel excite and propagate to the exit
point. At the exit point, energy is extracted from the carriers and harnessed for many purposes.
On the other hand, in the QET protocols, energy can be extracted from the exit point even if
no excited energy carriers arrive at the exit point of the channel. We locally measure quantum
fluctuation around the gateway point in the ground state of the channel system and announce
the measurement result to the distant exit point with zero energy density, where we can extract
energy from the channel. A key feature is that this measurement result includes information
about the quantum fluctuation of the channel around this distant point via quantum correlation
of the ground state of the channel system. Therefore, we can infer details about the behavior
of a distant fluctuation from the result of the local measurement. To compensate the extraction
of this information, some amount of energy must be infused into the channel system at the
measurement point; this is regarded as input energy to the gateway point of the channel. By
choosing and performing a proper local operation based on the announced information at
the distant point, the local zero-point oscillation around the distant point can be suppressed
relative to the ground-state one, yielding a negative energy density. During the operation,
respecting local energy conservation, positive amount of surplus energy is moved from the
channel system to external systems. This is regarded as output teleported energy from the exit
point of the channel.

One of the important unresolved problems in QET is the theoretical clarification of the
properties in 1 + 3 dimensions. Protocols in 1 + 1 dimensions have already been extensively
analyzed in previous studies [6–8]. However, (1 + 3)-dimensional models have not yet been
analyzed. In addition, all the protocols proposed thus far adopt quantum measurements
for discrete-variable information. Therefore, it would be interesting to investigate not only a
protocol with discrete-variable information but also one with continuous-variable information.
In this study, we carry out a detailed analysis of two QET protocols for (1 + 3)-dimensional
electromagnetic field in the Coulomb gauge. Local measurements of quantum fluctuations
in the vacuum state of the field require energy infusion to the field. The infused energy is
diffused to spatial infinity at the velocity of light and the state of the field soon becomes
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a local vacuum with zero energy around the measurement area. Obviously, this escaped
energy cannot be taken back to the measurement area by local operations around this area
if we do not know the measurement result of the fluctuation. However, if the measurement
result is available, we can effectively take back a part of this energy to the measurement area
by applying the QET mechanism. By carrying out a local unitary operation dependent on
the measurement result for the measurement area with zero energy density, the fluctuation
of zero-point oscillation is squeezed and a negative energy density appears around the area,
accompanied by the extraction of positive energy from the fluctuation to external systems.
Needless to say, without the measurement result, it is impossible to extract energy from the
zero-energy fluctuation. One of the two QET protocols we will consider is a teleportation in
which discrete-variable information about a fluctuation is obtained using a measurement with
a 1/2 spin (a qubit), and the other is a teleportation in which continuous-variable information
is obtained using a measurement with a harmonic oscillator. The discrete-variable protocol is
a straightforward extension of the protocol for a (1 + 1)-dimensional field proposed in [6]. The
measurements are generalized (POVM) ones that use probe systems (1/2 spin and harmonic
oscillator) strongly interacting with local electric field fluctuations during a short time. We
prove that for a large energy input, the continuous-variable teleportation is more attractive
than the discrete-variable teleportation. In the discrete-variable case, the amount of teleported
energy is suppressed by an exponential damping factor when the amount of energy infused
by the measurement increases. Meanwhile, this suppression factor becomes power damping in
the continuous-variable case. Therefore, it is concluded that obtaining more information about
the quantum fluctuation leads to teleporting more energy. This result suggests a new profound
relation between energy and quantum information. So far, the relationship between energy
and information has been extensively discussed only in the context of computation energy
cost [10–12]. The QET viewpoint may shed light on a new relationship between the amount
of teleported energy and the amount of quantum information about ground-state fluctuations
which would be characterized by various informational indices including mutual information
and entanglement. The explicit analysis about this relationship is beyond the scope of this
paper and will be reported elsewhere.

The remainder of this paper is organized as follows. In section 2, a brief review of the
quantization of the electromagnetic field in the Coulomb gauge is presented in order to clarify
our notations, and the emergence of negative energy density is explained. In section 3, we
discuss a discrete-variable protocol. In section 4, a continuous-variable protocol is analyzed.
In section 5, a summary and discussions are presented. In this paper, we adopt the natural unit
c = h̄ = 1.

2. Quantization in Coulomb gauge

We present a short review of quantization of the electromagnetic field in the Coulomb gauge
in order to clarify the notations used for later discussions. The gauge is defined by

A0 = 0, div A = 0

for the gauge field Aμ = (A0, A). Then, the equation of motion of the Heisenberg operator of
the gauge field Â(t, x) is reduced to the massless Klein–Gordon equation given by[

∂2
t − ∇2

]
Â = 0.

The solution can be expanded in terms of plain-wave modes as follows:

Â(t, x) =
∫

d3k√
(2π)32|k|

∑
h=1,2

[
eh(k)âh

kei(k·x−|k|t) + e∗
h(k)â

h†
k e−i(k·x−|k|t)],

3
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where â
h†
k

(
âh

k

)
is a creation (annihilation) operator of the photon with momentum k and

polarization h satisfying[
âh

k, â
h′†
k′

] = δhh′δ(k − k′),

and eh(k) is a polarization vector satisfying

eh(k)∗ · eh′(k) = δhh′ ,

k · eh(k) = 0.

In this study, because we take a sum of two polarization contributions to obtain the final
results, the reality condition can be imposed on eh(k) for simplicity such that e∗

h(k) = eh(k).
In addition, eh(k) satisfies the completeness relation as∑

h

ea
h(k)eb

h(k) = δab − kakb

k2
.

The energy density operator of the field is defined by

ε̂(x) = 1
2 : (Ê(x)2 + (∇ × Â(x))2) :,

where Ê(x) is the electric field operator and :: denotes the standard normal order with respect
to âh

k and â
h†
k . The Hamiltonian is given by the spatial integration of the energy density as

follows:

Ĥ =
∫

ε̂(x) d3x.

It is a well-known fact that the Hamiltonian (total energy of the field) is a nonnegative operator.
The vacuum state |0〉 is the eigenstate with the lowest eigenvalue zero of Ĥ as Ĥ |0〉 = 0. The
expectation value of energy density vanishes for the vacuum state as

〈0|ε̂(x)|0〉 = 0. (1)

In the later discussion, coherent states are used often. Therefore, we present a summary
of the related properties of the coherent states. A displacement operator generating a coherent
state from |0〉 is given by

Û (p, q) = exp

[
i
∫

[p(x) · Â(x) − q(x) · Ê(x)]d3x

]
,

where p(x) and q(x) are real vector functions satisfying the conditions of this gauge as

∇ · p(x) = 0,

∇ · q(x) = 0.

By using the commutation relation between the gauge field and the electric field at time t = 0
given by

[Âa(x), Êb(y)] = i

(
δab − ∂a∂b

∇2

)
δ(x − y),

it is easily verified that Û (p, q) displaces Â(x) and Ê(x) as

Û †(p, q)Ê(x)Û(p, q) = Ê(x) + p(x), (2)

Û †(p, q)Â(x)Û(p, q) = Â(x) + q(x). (3)

In addition, we are able to prove a product formula as

Û (p1, q1)Û(p2, q2) = exp

[
i

2

∫
(p1·q2−q1·p2)d

3x

]
Û (p1 + p2, q1 + q2).

4
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This implies that the set of Û (p, q) forms a unitary ray representation of the displacement
group of the field. Coherent states generated by Û (p, q) are defined by

|(p, q)〉 = Û (p, q)|0〉. (4)

By using the Fourier transformation of p(x) and q(x) defined by

P(k) =
∫

p(x)e−ik·xd3x,

Q(k) =
∫

q(x)e−ik·xd3x,

the coherent states are explicitly written in terms of the creation operator â
h†
k as follows:

|(p, q)〉 = exp

[
−1

2

∫
d3k

(2π)32|k| |P(k) − i|k|Q(k)|2
]

× exp

[
i
∫

d3k√
(2π)32|k|

∑
h

eh(k) · (P(k) − i|k|Q(k))a
h†
k

]
|0〉.

From the above expression, it is easy to prove that |(p, q)〉 is an eigenstate of the annihilation
operator âh

k such that

âh
k |(p, q)〉 = i√

(2π)32|k|
eh(k) · (P(k) − i|k|Q(k))|(p, q)〉. (5)

The inner product of two coherent states is explicitly calculated as

〈(p1, q1)|(p2, q2)〉 = e
i
2

∫
(p1·q2−q1·p2)d

3x

× e
− 1

2

∫
d3k

(2π)32|k| |P1(k)−P2(k)−i|k|(Q1(k)−Q2(k))|2
. (6)

Next, we examine the emergence of a region with negative energy density in this standard
theory. As a simple example [4], let us consider a superposition state |�〉 of the vacuum state
|0〉 and a two-photon state |2〉 such that

|�〉 = cos θ |0〉 + eiδ sin θ |2〉,
where θ and δ are real parameters with θ ∈ [0, π ] and δ ∈ [0, 2π ]. Generally, an off-diagonal
element of the energy density 〈0|ε̂(x)|2〉 does not vanish for a fixed point x. This is because
ε̂(x) includes a non-vanishing term proportional to âh

k âh′
k′ . This fact indicates the emergence

of negativity of the energy density as follows. The expectation value of the energy density for
the state |�〉 is calculated as

〈�|ε̂(x)|�〉 = 2 cos θ sin θ(cos δRe〈0|ε̂(x)|2〉 − sin δIm〈0|ε̂(x)|2〉) + sin2 θ〈2|ε̂(x)|2〉.
In this result, let us set the parameters θ and δ so as to satisfy

cos θ = 〈2|ε̂(x)|2〉√
〈2|ε̂(x)|2〉2 + 4|〈0|ε̂(x)|2〉|2

,

sin θ = 2|〈0|ε̂(x)|2〉|√
〈2|ε̂(x)|2〉2 + 4|〈0|ε̂(x)|2〉|2

,

tan δ = − Im〈0|ε̂(x)|2〉
Re〈0|ε̂(x)|2〉 .

Then, 〈�|ε̂(x)|�〉 is evaluated as a negative value as follows:

〈�|ε̂(x)|�〉 = − 1
2

[√〈2|ε̂(x)|2〉2 + 4|〈0|ε̂(x)|2〉|2 − 〈2|ε̂(x)|2〉] < 0.

5
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Therefore, the emergence of negative-energy regions is not a peculiar phenomenon in quantum
field theory. Quantum interference in the superposition of photon number eigenstates yields
negative values. It should be re-emphasized that despite the existence of regions with negative
energy density, the expectation values of Ĥ remain nonnegative. This implies that there exist
regions with a sufficient amount of positive energy so as to make the total energy nonnegative.
As described in sections 3 and 4, this negative energy plays a crucial role in the QET protocols.

3. Discrete-variable teleportation

Our protocol for QET with a 1/2 spin probe is a straightforward extension of that in [6] and
comprises the following three steps.

(1) At time t = 0, the spin probe is strongly coupled with the vacuum fluctuation of the
electric field within a finite compact region Vm during a very short time. In this process,
some information about the fluctuation is imprinted into the probe. Positive energy is
inevitably infused into the field during the measurement process, as seen later. The
amount of energy is denoted by Em. When this energy is infused, positive-energy wave
packets of the field are generated and these propagate to spatial infinity with the velocity
of light.

(2) After switching off the interaction, projective measurement of the z-component of the
spin is carried out. If the up or down state is observed, we assign s = + or −, respectively,
to the measurement result. This implies that we obtain one-bit information about the field
fluctuation via the probe measurement.

(3) At time t = T , it is assumed that the measurement has finished and the wave packets have
already escaped from the region. Hence, the energy density in the region Vm is exactly
zero. Then, a local displacement operation is carried out depending on s within Vm. Even
though we have zero energy in Vm, positive energy is extracted from the field fluctuation
during the local operation, generating negative-energy wave packets of the field. The
amount of negative energy of the wave packets is denoted by Eo(= −|Eo|). Therefore,
the amount of energy extracted from the field is given by +|Eo|.
In step (1), the measurement interaction between the electric field and the spin probe is

given by

Ĥm(t) = g(t)σ̂zĜ, (7)

where σ̂z is the z-component of the Pauli matrices of the spin probe, g(t) is a time-dependent
real coupling constant and Ĝ is a Hermitian operator defined by

Ĝ = π

4
−

∫
am(x) · Ê(x)d3x. (8)

Here, am(x) is a real vector function with a support equal to Vm satisfying ∇ · am(x) = 0. In
addition, by taking a short-time limit for switching the interaction, we set

g(t) = δ(t − 0). (9)

The initial state of the spin probe is assumed to be the up state |+x〉 of the x-component of the
spin given by

|+x〉 = 1√
2

[
1

1

]
.

In step (2), the measurement operators M̂± [13] are defined by

M̂± = 〈±x |T exp

[
−i

∫ tm

0
Ĥm(t)dt

]
|+x〉, (10)

6
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Figure 1. The first schematic diagram of QET in the xy-plane slice. The local measurement is
performed with the infusion of positive energy Em to the field and the measurement result s is
obtained. The measurement area Vm is represented by a circle in the plane. A positive-energy wave
packet is generated in the field system and it escapes to spatial infinity at the velocity of light.

where |−x〉 is the down state of the x-component of the spin given by

|−x〉 = −i√
2

[
1

−1

]
.

By using equation (9), M̂± are computed as

M̂+ = cos Ĝ, (11)

M̂− = sin Ĝ. (12)

Using equation (4), the post-measurement states of the field obtaining s = ± are calculated as

|ψ+〉 = 1√
p+

M̂+|0〉 = 1

2
√

p+
[ei π

4 |(0, am)〉 + e−i π
4 | (0,−am)〉],

|ψ−〉 = 1√
p−

M̂−|0〉 = 1

2i
√

p−
[ei π

4 |(0, am)〉 − e−i π
4 |(0, − am)〉],

where p± is the measurement probability of |±x〉 for the spin probe and it is evaluated as

p± = 〈0|M̂†
±M̂±|0〉 = 1

2 .

After the measurement, the average state of the field is given by

ρ̂M̂ =
∑
s=±

ps |ψs〉〈ψs |.

The amount of energy Em of the field after the measurement is not zero but is instead a positive
value given by

Em =
∫

Tr[ρ̂M̂ ε̂(x)]d3x = 1

2

∫
(∇ × am(x))2d3x. (13)

This evaluation of equation (13) is achieved by using equation (5). Because the initial state of
the field is the vacuum state and it has zero energy, the positive value in equation (13) implies
that the manipulation of the measurement requires positive work from outside. In general, any
local operation on the vacuum state infuses nonzero energy into the field if the post-operation
state is not the vacuum state, because the Hamiltonian is a nonnegative operator. In figure 1,

7
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the measurement process of QET (step (1)) is depicted in the xy-plane slice. The measurement
area Vm is represented by a circle in the plane.

Next, let us discuss time evolution of the field after the measurement. The average state
evolves as

ρ̂m(t) =
∑
s=±

psÛ(t)|ψs〉〈ψs |Û (t)†

by the time-evolution operator Û (t) = exp[−itĤ ]. The Heisenberg operators Â(t, x) and
Ê(t, x) are given by the Schrödinger operators Â(x)(= Â(0, x)) and Ê(x)(= Ê(0, x)) as
follows:

Â(t, x) =
∫

�(2)(t, x − y)Â(0, y)d3y +
∫

�(1)(t, x − y)Ê(0, y)d3y, (14)

Ê(t, x) =
∫

∂t�
(2)(t, x − y)Â(0, y)d3y +

∫
�(2)(t, x − y)Ê(0, y)d3y, (15)

where �(1) and �(2) are Lorentz-invariant functions defined by

�(1)(t, x − y) = 1

2π
ε(t)δ(t2 − |x − y|2),

�(2)(t, x − y) = ∂t�
(1)(t, x − y). (16)

Both the functions �(1) and �(2) vanish in the off-light-cone region with t2 − |x − y|2 	= 0
and satisfy the massless Klein–Gordon equation:[

∂2
t − ∇2

]
�(n)(t, x − y) = 0.

Substituting equation (14) and equation (15) into ε̂(t, x) yields the time evolution of the
average value of the energy density as

〈ε̂(t, x)〉 = Tr[ρ̂m(t)ε̂(x)] = 1
2 [Π(t, x)2 + b(t, x)2], (17)

where Π(t, x) and b(t, x) are given by

b(t, x) =
∫

�(2)(t, x − y)∇ × am(0, y)d3y, (18)

Π(t, x) =
∫

∂t�
(2)(t, x − y)am(0, y)d3y. (19)

Taking account of the explicit form of �(2)(t, x − y) in equation (16), the above result teaches
us that the wave packets excited by the measurement soon escape from the measurement area
to spatial infinity with the velocity of light. This ensures that the energy density in Vm returns
to zero. At time t = T , the state ρ̂m(T ) is assumed to be a local vacuum state with zero energy
density:

Tr[ρ̂m(T )ε̂(x)] = 0

for x∈Vm.
In step (3), let us consider a local displacement operation within Vm depending on s

defined by

Ûs = exp

[
isθ

∫
fo(x) · Â(x)d3x

]
, (20)

where θ is a real constant fixed below, and fo(x) is a real vector function with the support Vm

that satisfies

∇ · fo(x) = 0

8
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so as to preserve gauge invariance of Ûs . In this process, positive energy is released on average
from the field to the apparatus executing Ûs by taking a proper value of θ . Let us introduce
the localized energy operator around Vm as

Ĥo =
∫

w(x)ε̂(x)d3x,

where w(x) is a real window function of Vm that satisfies w(x) = 1 for x∈Vm and decays
rapidly outside Vm. The average state after the displacement operation is given by

ρ̂ =
∑
s=±

ÛsÛ (T )M̂s |0〉〈0|M̂†
s Û

†(T )Û †
s .

For this state, the average energy of the field around Vm is defined by

Eo = Tr[Ĥoρ̂] =
∑
s=±

〈0|M̂†
s Û

†(T )Û †
s ĤoÛsÛ (T )M̂s |0〉. (21)

Here, the operator Û †(T )Û
†
s ĤoÛsÛ (T ) is rewritten using equations (2) and (3) as

Û †(T )Û †
s ĤoÛsÛ (T ) =

∫
w(x)ε̂(t, x)d3x + sθ

∫
fo(x) · Ê(T , x)d3x +

1

2
θ2

∫
fo(x)2d3x,

where ε̂(t, x) is the Heisenberg operator given by Û †(T )ε̂(x)Û(T ), and we have used
w(x)fo(x) = fo(x). Substituting the above relation into equation (21) yields the following
relation:

Eo =
∑
s=±

〈0|M̂†
s

[∫
w(x)ε̂(t, x)d3x

]
M̂s |0〉

+ θ
∑
s=±

s〈0|M̂†
s

[∫
fo(x) · Ê(T , x)d3x

]
M̂s |0〉

+
1

2
θ2

∫
fo(x)2d3x〈0|

(∑
s=±

M̂†
s M̂s

)
|0〉. (22)

In order to further simplify the form of Eo, the following equation is used:[∫
fo(x) · Ê(T , x)d3x,

∫
am(y) · Ê(0, y)d3y

]

= i
∫ ∫

fo(x) · am(y)∂T �(2)(T , x − y)d3xd3y. (23)

This is proven by equation (15). Taking account of the supports of fo(x) and am(y), it is verified
that the integration of the right-hand side in equation (23) is zero because ∂T �(2)(T , x − y)

vanishes when T 2 − |x − y|2 	= 0. Thus, we obtain the relation[∫
fo(x) · Ê(T , x)d3x,

∫
am(y) · Ê(0, y)d3y

]
= 0. (24)

In a similar manner, we can show the following relation using equations (14) and (15):[∫
w(x)ε̂(T , x)d3x,

∫
am(y) · Ê(0, y)d3y

]
= 0. (25)

9
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From these relations, we can show the commutation relations given by[∫
w(x)ε̂(T , x)d3x, M̂†

s

]
= 0,

[∫
fo(x) · Ê(T , x)d3x, M̂†

s

]
= 0

by recalling that M̂
†
s is a function of

∫
am(y) · Ê(0, y)d3y, as seen in equations (8), (11)

and (12). Therefore, we can move the positions of M̂
†
s in the first and second terms of the

right-hand side of equation (22) to the right, and rewrite Eo as

Eo = 〈0|
∫

w(x)ε̂(t, x)d3x

(∑
s=±

M̂†
s M̂s

)
|0〉

+ θ〈0|
(∫

fo(x) · Ê(T , x)d3x

) (∑
s=±

sM̂†
s M̂s

)
|0〉

+
1

2
θ2

∫
fo(x)2d3x〈0|

(∑
s=±

M̂†
s M̂s

)
|0〉. (26)

By using two relations of the measurement operators given by∑
s=±

M̂†
s M̂s = cos2 Ĝ + sin2 Ĝ = 1,

∑
s=±

sM̂†
s M̂s = cos2 Ĝ − sin2 Ĝ = cos(2Ĝ),

the following expression of Eo is obtained:

Eo = 〈0|
∫

w(x)ε̂(t, x)d3x|0〉 + θη +
1

2
θ2ξ, (27)

where η and ξ are real constants defined by

η = 〈0|
(∫

fo(x) · Ê(T , x)d3x

)
cos(2Ĝ)|0〉, (28)

ξ =
∫

fo(x)2d3x. (29)

The first term of the right-hand side of equation (27) vanishes because we can transform it into

〈0|
∫

w(x)ε̂(T , x)d3x|0〉

= 〈0|Û †(T )

∫
w(x)ε̂(0, x)d3xU(T )|0〉

=
∫

w(x)〈0|ε̂(x)|0〉d3x = 0.

Here, we have used Û (T )|0〉 = |0〉 and equation (1). The expression of η in equation (28) can
be further simplified by noting that

cos(2Ĝ)|0〉 = i

2
[|(0,2am)〉 − | (0, − 2am)〉] . (30)

By using equation (5) and equation (30), the following relation is derived:

〈0|Ê(T , x) cos(2Ĝ)|0〉 = −〈0|(0,2am)〉
∫

∂2
T �(T , x − y)am(y)d3y, (31)

10
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where �(t, x) is a Lorentz invariant function defined by

�(t, x) =
∫

d3k

(2π)3|k| cos (k · x − |k|t) .

In contrast to �(1)(t, x) and �(2)(t, x), the function �(t, x) does not vanish in the off-light-cone
region:

�(t, x)|t2−x2 	=0 = − 1

2π2

1

t2 − x2
.

The factor 〈0|(0,2am)〉 is real and calculated from equation (6) as

〈0| (0, 2am)〉 = exp

[
−

∫
d3k|k|
(2π)3

|ãm(k)|2
]

,

where ãm(k) = ∫
am(x)e−ik·xd3x. Substituting equation (31) into equation (28) gives the final

expression of η as

η = 〈0|(0,2am)〉
∫ ∫

∂2
T �(T , x − y)fo(x) · am(y)d3xd3y. (32)

Minimization of Eo with respect to θ is achieved by taking the parameter θ as

θ = −η

ξ
. (33)

Substituting the value of θ into equation (27) yields the following expression of Eo:

Eo = − η2

2ξ
. (34)

Substituting equations (29) and (32) into equation (34), we obtain our main result in this
section:

Eo = −Dq

[∫ ∫
∂2
T �(T , x − y)fo(x) · am(y)d3xd3y

]2

2
∫

fo(x)2d3x
, (35)

where Dq is an exponential damping factor with respect to am such that

Dq = |〈0|(0,2am)〉|2 = exp

[
−2

∫
d3k|k|
(2π)3

|ãm(k)|2
]

. (36)

Because ξ > 0, as seen in equation (29), it is of importance that Eo is negative in
equation (34):

Eo = −|Eo| < 0.

Respecting local energy conservation, this result implies that positive energy +|Eo| moves
from the field to external systems during the displacement operation Ûs because the energy
of the field around Vm is zero before the operation. Non-negativity of the total energy of the
field ensures that |Eo| is smaller than Em, as discussed in [6]. The wave packets with negative
energy begin to chase after the positive-energy wave packets which are generated by the first
measurement. Figure 2 shows the energy extraction process (step (2)). The outside doughnut-
shaped region represents the propagating wave packet generated by the measurement in
step (1). The displacement operation Ûs is performed in the measurement area Vm denoted by
the circle in the figure. In figure 3, the average energy density is plotted immediately before
the displacement operation at t = T − 0. We have zero energy around the area where Ûs is
performed. In figure 4, the average energy density after the operation is plotted. Negative
energy density appears around Vm. In conclusion, a part of the escaped energy is effectively
retrieved to the measurement area by this QET protocol.

11
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oE+

mE

oE-

sU

x

y

Figure 2. The second schematic diagram of QET in the xy-plane slice. The outside doughnut-
shaped region represents the propagating wave packet generated by the measurement. By using
the measurement result s, the displacement operation Ûs is carried out in the measurement area Vm

denoted by the circle. After the operation, a wave packet with negative energy −|Eo| is generated,
accompanying the extraction of positive energy +|Eo| to external systems.

positive
energy
wave

positive
energy
wave

ε

sU

x

Figure 3. The average energy density is schematically plotted immediately before the displacement
operation at t = T −0. The positive-energy wave packet generated by the measurement has already
escaped from the measurement area where Ûs is performed.

In this discrete-variable case with the spin probe, the amount of extracted energy |Eo| in
equation (35) is suppressed by the exponential damping factor Dq in equation (36) when the
magnitude of am and that of the infused energy Em increase. This suppression becomes power
damping for a continuous-variable teleportation with a probe harmonic oscillator, as seen in
the next section.

4. Continuous-variable teleportation

In this section, we analyze a QET protocol with a continuous variable. The essential part of the
protocol is the same as that discussed in section 3 except the probe system and the operation

12
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x

positive
energy
wave

positive
energy
wave

negative
energy
wave

negative
energy
wave

ε

extraction
of positive
energy

Figure 4. The average energy density is schematically plotted after the operation. The wave
packet with negative energy −|Eo| is generated by the extraction of positive energy +|Eo| to
external systems.

dependent on the measurement result. As the probe to measure the quantum fluctuation of the
electric field, let us consider a harmonic oscillator. The free Hamiltonian is given by

Ĥho = 1
2 p̂2 + 2q̂2, (37)

where q̂ is the position operator and p̂, the momentum operator. This oscillator couples with
the electric field by the measurement interaction such that

Ĥ ′
m(t) = g(t)p̂Ĝ,

where g(t) is the time-dependent factor in equation (9) and Ĝ, the Hermitian operator in
equation (8). The initial state of the oscillator is the ground state |g〉 of Hho. Introducing an
eigenstate |q〉 of q̂ with eigenvalue q, the ground state is described by

〈q|g〉 =
(

2

π

)1/4

exp[−q2].

After the measurement interaction is switched off, we measure the position q̂. The
measurement operator for the measurement result q is computed as

M̂q = 〈q| exp[−ip̂Ĝ]|g〉.
More explicitly, M̂q is written as

M̂q =
(

2

π

)1/4

exp[−(q − Ĝ)2]. (38)

The operator M̂q satisfies the following relations:∫ ∞

−∞
M̂†

qM̂qdq = 1, (39)

∫ ∞

−∞
qM̂†

qM̂qdq = Ĝ, (40)

∫ ∞

−∞
q2M̂†

qM̂qdq = Ĝ2 +
1

4
. (41)

13
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The state after the measurement is given by

ρ̂ ′
m =

∫
M̂q |0〉〈0|M̂†

qdq.

In this measurement, energy is infused into the field as given by the protocol described in
section 3. The expectation value of the infused energy density is evaluated as

〈ε̂(t, x)〉 = Tr[ρ̂ ′
mε̂(t, x)] =

∫
〈0|M̂†

q ε̂(t, x)M̂q |0〉dq, (42)

where ε̂(t, x) = Û †(t)ε̂(x)Û(t). The value 〈ε̂(t, x)〉 can be calculated by using the following
integral formula:

exp(−q2) = 1√
4π

∫
e− p2

4 −ipqdp. (43)

From equation (43), the following relation is derived:

M̂q |0〉 =
(

2

π

)1/4

exp[−(q − Ĝ)2]|0〉

=
(

2

π

)1/4 1√
4π

∫
dpe− p2

4 −ipq exp[ipĜ]|0〉.

From equation (4), M̂q |0〉 is rewritten as

M̂q |0〉 =
(

2

π

)1/4 1√
4π

∫
dpe− p2

4 −ip(q− π
4 )|(0, pam)〉. (44)

Substituting equation (44) into equation (42) yields the following manipulation:

〈ε̂(t, x)〉 = 1√
2π

∫ ∫
e− p̄2

4 − p2

4 〈(0, p̄am) |ε̂(t, x)| (0, pam)〉
(∫

ei(p̄−p)(q− π
4 )

dq

2π

)
dp̄dp

= 1√
2π

∫
dpe− p2

2 〈(0, pam) |ε̂(t, x)| (0, pam)〉

= 1√
2π

∫
p2e− p2

2 dp〈(0, am) |ε̂(t, x)| (0, am)〉
= 〈(0, am) |ε̂(t, x)| (0, am)〉, (45)

where we have used 〈(0, pam) |ε̂(t, x)| (0, pam)〉 = p2〈(0, am) |ε̂(t, x)| (0, am)〉. From
equation (45), we can show that the input energy

∫ ∞
−∞ 〈ε̂(0, x)〉 d3x in the measurement

process is the same as that of the discrete-variable case described by equation (13) of section 3.
Besides, in the same manner as the derivation of equation (17), it is possible from equation (45)
to show the equation

〈ε̂(t, x)〉 = 1
2 [Π(t, x)2 + b(t, x)2],

where b(t, x) and Π(t, x) are given by equation (18) and equation (19), respectively.
After the wave packets generated by the measurement escape from the measurement area,

we execute at t = T , when the field has zero energy inside Vm, a local unitary operation
dependent on the measurement result q given by

Ûq = exp

[
iqθ ′

∫
fo(x) · Â(x)d3x

]
, (46)

which is analogous to equation (20). The parameter θ ′ is real and fixed later. Then, the energy
around the measurement area is evaluated as

E′
o =

∫
dq〈0|M̂†

qÛ
†(T )Û †

qĤoÛqÛ (T )M̂q |0〉.

14
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By using equations (39)–(41) and

Û †(T )Û †
qĤoÛqÛ (T ) =

∫
w(x)ε̂(t, x)d3x

+ θ ′q
∫

fo(x) · Ê(T , x)d3x +
1

2
θ ′2q2

∫
fo(x)2d3x,

the average energy E′
o is rewritten, in a manner similar to that in section 3, as

E′
o = θ ′η′ +

ξ

2
θ ′2〈0|

(
Ĝ2 +

1

4

)
|0〉,

where ξ is given by equation (29) and η′ is a real constant that is evaluated as

η′ = 〈0|
(∫

fo(x) · Ê(T , x)d3x

)
Ĝ|0〉

= −〈0|
(∫

fo(x) · Ê(T , x)d3x

) (∫
am(y) · Ê(y)d3y

)
|0〉

= 1

2

∫ ∫
∂2
T �(T , x − y)fo(x) · am(y)d3xd3y. (47)

By fixing the parameter θ ′ as

θ ′ = − η′

ξ 〈0| (Ĝ2 + 1
4

) |0〉 , (48)

the minimization of E′
o with respect to θ ′ is attained as

E′
o = − η′2

2ξ 〈0| (Ĝ2 + 1
4

) |0〉 .
By substituting equations (29) and (47) into the above equation, we obtain the final expression
of E′

o as

E′
o = −Dho

[∫ ∫
∂2
T �(T , x − y)fo(x) · am(y)d3xd3y

]2

2
∫

fo(x)2d3x
, (49)

where Dho is given by

Dho = [〈0|(4Ĝ2 + 1)|0〉]−1 =
[

1 +
π2

4
+ 2

∫
|k||ãm(k)|2 d3k

(2π)3

]−1

. (50)

It is noted that the form of E′
o in equation (49) is the same as that of Eo in equation (35), except

for the form of the damping factor Dq. Unlike the exponential damping of Dq, the suppression
factor Dho is a power damping factor with respect to |ãm(k)|. Because of this weak damping,
the extracted energy |E′

o| by this protocol does not vanish even for a large amplitude limit with
|ãm(k)| → ∞ as

|E′
o| ∼

∣∣∣∫ |k1| cos (|k1|T ) nm (k1)
∗ · f̃o (k1)

d3k1
(2π)3

∣∣∣2

4
(∫ ∣∣f̃o (k2)

∣∣2 d3k2
(2π)3

) ,

where f̃o(k) = ∫
fo(x)e−ik·xd3x and nm(k) is a rescaled amplitude given by

nm(k) = ãm(k)√∫ |k′| |ãm (k′)|2 d3k′
(2π)3

.

As a conclusion, we can say that obtaining more information of the fluctuation leads to
teleporting more energy. It is an important question what measurements and operations
attain the maximum transporation rate of energy in the QET mechanism, however, remains
unsolved yet.
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5. Summary and discussion

We have analyzed in detail two protocols of QET for the electromagnetic field and shown that
a part of the lost energy in the measurement can be retrieved by the use of the measurement
result. The amount of energy infused by the measurement is the same in both the cases and it is
given by equation (13). For the discrete-variable case, the measurement with the operator M̂s

given by equations (11) and (12) is performed. The amount of retrieval energy |Eo| is given by
equation (35) for the displacement operator in equation (20) with θ fixed in equation (33). For
the continuous-variable case, the measurement with the operator M̂s given by equation (38) is
performed. The amount of energy retrieved |E′

o| is given by equation (49) for the displacement
operator in equation (46) with θ fixed in equation (48). For the large amplitude |ãm(k)| and
the large energy input Em, the continuous-variable teleportation is found to be more preferable
than the discrete-variable teleportation. In the discrete-variable case, the amount of extracted
energy is suppressed by the exponential damping factor Dq in equation (36) when the energy
infused by the measurement increases. For the continuous-variable case, the suppression
factor becomes the power damping factor Dho in equation (50). Therefore, it is concluded that
obtaining more information about the quantum fluctuation leads to teleporting more energy.

In future QET experiments, the separation between Vm and the region of the escaping
wave packet with positive energy should not be so large to extract an observable amount of
energy. To see this, let us take a large-separation limit as T  |x − y| for x, y ∈ Vm. Then,
the amount of teleported energy decays as

|Eo| ∝ 1

T 12
,

in both the protocols. This rapid decay becomes one of the serious obstacles to observing
the extraction of energy by QET. Therefore, for the best implementation of the QET in
1 + 3 dimensions, T should be of the same order as the measurement area size. From this
viewpoint, QET protocols are more attractive for physical systems described effectively by
(1 + 1)-dimensional massless field models that have slower-decay properties (Eo ∝ T −4) of
the transported energy for a large separation T, as discussed in [6, 7].
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